Homework Solutions

Chapter 8 - Page 551

Exercise 30

(a) The population mean is 4 .
(b) First, find SSX.

$$
\begin{aligned}
\mathrm{SSX} & =\sum(x-\mu)^{2} \\
& =(2-4)^{2}+(4-4)^{2}+(6-4)^{2} \\
& =4+0+4 \\
& =8 .
\end{aligned}
$$

Then the variance is $\sigma^{2}=\frac{\mathrm{SSX}}{N}=\frac{8}{3}=2.6667$.
(c)

Observed sample of size $n=2$	Sample Mean	Sample Variance (using n in denominator)	Sample Variance (using $n-1$ in denominator)
2,2	2	0	0
2,4	3	1	2
2,6	4	4	8
4,2	3	1	2
4,4	4	0	0
4,6	5	1	2
6,2	4	4	8
6,4	5	1	2
6,6	6	0	0

(d) The average is $\frac{0+1+4+1+0+1+4+1+0}{9}=\frac{12}{9}=1.3333$. It is only half as large as σ^{2}.
(e) The average is $\frac{0+2+8+2+0+2+8+2+0}{9}=\frac{24}{9}=2.6667$. It is equal to σ^{2}.
(f) The formula with $n-1$ gives an unbiased estimator of σ^{2}.

